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Two-dimensional time-dependent buoyancy-induced flows above a horizontal line heat 
source inside rectangular vessels, with adiabatic sidewalls and top and bottom walls 
maintained at uniform temperature, are studied numerically. Transitions to unsteady 
flows are performed by direct simulations for various depths of immersion of the 
source in the central vertical plane of air-filled vessels. For a square vessel and a line 
source near the bottom wall, the numerical solutions exhibit a sequence of instabilities, 
called natural swaying motion of confined plumes, beginning with a periodic regime 
having a high fundamental frequency followed by a two-frequency locked regime. 
Then, broadband components appearing in the spectra indicate chaotic behaviour and 
a weakly turbulent motion arises via an intermittent route to chaos. For rectangular 
vessels of aspect ratio greater than 2 and depths of immersion greater than the width, 
the flow undergoes a pitchfork bifurcation. This symmetry breaking is driven by the 
destabilization of an upper unstable layer of stagnant fluid above the plume. Then a 
subcritical Hopf bifurcation occurs. On the other hand, if the depth of immersion is 
lower than the width of the vessel, a stable layer of fluid is at rest below the line source. 
Then penetrative convection sets the whole air-filled vessel in motion and an oscillatory 
motion of very low frequency arises through supercritical Hopf bifurcation followed by 
a two-frequency locked state. 

1. Introduction 
Free laminar convection from a horizontal line heat source has been extensively 

investigated in the past. The classical self-similar solutions have been widely used in 
early theoretical studies (Fujii 1963; Gebhart, Pera & Schorr 1970; Fujii, Morioka & 
Uehara 1973; see also Gebhart et al. 1988, chap. 3 for a complete review), while the 
analysis have been extended to second-order (Hieber & Nash 1975) and third-order 
boundary-layer theory (Monvald, Mitsotakis & Schneider 1986). During the same 
period, many experiments were conducted in air, water and silicone or spindle oil 
(Brodowicz & Kierkus 1966; Lyakhov 1970; Schorr & Gebhart 1970; Gebhart et al. 
1970; Fujii et al. 1973; Nawoj & Hickman 1977). To explain the discrepancies between 
analytical and experimental results for centreline temperature and velocity dis- 
tribution, the concept of a virtual line source has been considered by Forstrom & 
Sparrow (1967), Lyakhov (1970), Hieber & Nash (1975) and Yosinobu et al. (1979) in 
order to accommodate the divergence of the plume flow from ideal due to the finite 
diameter of the wire used to simulate the line source. However, this approach raised 
some controversies (Schorr & Gebhart 1970; Fuji et al. 1973 ; Nawoj & Hickman 1977) 
and did not account for a11 of the 15-20% differences between experiments and 
theoretical results; also, neither end conduction effects nor decrease of the plume 
velocity near both ends of the line source can account for these discrepancies. 
Yosinobu et al. (1979) attempted to explain them by heat loss under the wire due to 
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the fluid entrainment. But, Lyakhov (1970) found only a weak difference on bounding 
the space below the line source with an impermeable insulating plate, which is more 
consistent with the boundary-layer theory. 

Forstrom & Sparrow (1967) were the first to observe a naturally swaying motion of 
the plume. This was confirmed by Schorr & Gebhart (1970) through flow visualization. 
Following these observations of regular swaying plumes, linear stability analysis of 
freely rising plumes based on quasi-parallel theory has been performed by Pera & 
Gebhart (1971) and later by Wakitani & Yosinobu (1984), but they failed to find a 
critical Grashof number. Haaland & Sparrow (1973) and Hieber & Nash (1975) 
obtained lower branches of neutral curves (and then critical Grashof numbers) by 
taking some non-parallel and higher-order effects of the base flow into account in the 
linear stability analysis. This indicates that two-dimensional disturbances are amplified 
selectively (see also Gebhart et al. 1988, chap. 11). More recently, Wakitani (1985) 
using a non-parallel theory (the WKB method) confirmed their results except for the 
amplification rate of disturbances within unstable regions. The experimental results of 
Bill & Gebhart (1975) for a plane plume subjected to naturally occurring disturbances 
and those of Pera & Gebhart (1971), Yosinobu et al. (1979) and Wakitani & Yosinobu 
(1 984) for controlled disturbances confirmed the predictions of the linear stability 
analysis over a wide range of Rayleigh numbers. It has been demonstrated that 
sufficiently high-frequency disturbances are stable as they are convected downstream. 

The transition from a laminar to a turbulent state in a freely rising plume has been 
experimentally investigated by Forstrom & Sparrow (1967), Bill & Gebhart (1975), 
Yosinobu et al. (1979) and Noto (1989), and in stable thermally stratified fluid inside 
a large enclosure by Noto, Matsui & Matsumoto (1982). Forstrom & Sparrow (1967) 
and Bill & Gebhart (1975) determined the beginning of the transition to be at Rayleigh 
numbers Ra, = 3.6 x lo8 and Ra, z 8 x los respectively, while for an air plume Noto 
(1989) obtained 7 x lo7 < Ra, < 1.4 x lo8 from spectral analysis of thermocouple 
signals and change of the slope of the midplane temperature (the Rayleigh number is 
based on the vertical distance along the plume and the heat rate input). Noto (1989) 
found a swaying frequency of the thermal air plume proportional to the 0.4 or $ power 
of the heat rate depending on whether the plume reaches the ceiling of the enclosure 
in a laminar or a turbulent state, respectively. Eichhorn & Vedhanayagam (1982) 
determined analytically a power value of 0.3, which correlated their experimental 
results for a water turbulent plume within 10 %. A $ power value was also found both 
by Urakawa, Morioka & Kiyota (1983) for the swaying frequency of a spindle oil 
plume with a free surface and by Wakitani & Yosinobu (1984) for a laminar air plume. 
Noto (1989) related the large discrepancies found in the critical Rayleigh number to the 
different methods used in its determination. 

Also noted in the experiments of Eichhorn & Vedhanayagam (1982) and Urakawa 
et al. (1983) was a meandering motion. Indeed, experiences (performed in large 
rectangular enclosures) not only showed that the plume sways in a plane perpendicular 
to the wire but can also meander in the direction of the wire, i.e. across the span of the 
plume (Forstrom & Sparrow 1967; Fujii et al. 1973); however the underlying physical 
mechanisms are not yet clarified. Eichhorn, Lienhard & Chen (1974) and Incropera & 
Yaghoubi (1980) in experimental studies of immersed isothermal cylinders also 
observed ‘ transition from 2 to 3-dimensional instability, with increased the axial 
twisting or billowing’. This transition was attributed to fluid entrainment effects by 
Incropera & Yaghoubi (1980). When a meandering motion exists, these two periodic 
motions (meandering and swaying) are not independent of each other : the swaying 
motion is stable and only when the meandering waveforms along the heater are stable. 
This happens when the heater length equals integral multiples of a half-wavelength, the 
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meandering wave being a fairly precise sine curve (Eichhorn & Vedhanayagam 1982; 
Urakawa et at. 1983). The liquid surface height, linearly related to the meandering 
wavelength, and the length of the heater are the main parameters controlling the 
meandering waveform. It should be noticed that Pera & Gebhart (1971), Nawoj & 
Hickman (1977), Yosinobu et al. (1979), Noto et al. (1982) and Noto (1989) did not 
find any meandering motion in their experiments. Noto related, without experimental 
proof as it seems, the meandering motion to the width of the enclosure: meandering 
waveforms would appear only for small widths of enclosures. 

Although considerable research efforts have been devoted to the study of self-similar 
solutions for freely rising plumes, they were confined inside vessels in many 
experimental investigations, in which the ascending fluid is cooled at a horizontal solid 
or free surface inducing a recirculating flow along sidewalls and an entrainment of 
underlying fluid. Despite the contributions of the foregoing experimental studies, much 
remains to be learned concerning the interaction of the plume motion with its 
surrounding, in particular with the top surface. To the authors’ knowledge, no 
attempts have yet been made to numerically simulate thermal plumes inside rectangular 
vessels, except the recent ones of Peyret (1990) for double-diffusive convection and Zia, 
Xin & Zhang (1990) for an externally heated enclosure containing a local heat source 
of finite size. The restriction to two-dimensional flows precludes three-dimensional 
effects along the line source. Such a limitation is imposed by the computers presently 
available but a two-dimensional model is of interest to provide insight into the 
occurrence of the swaying motion and also into the transition from periodicity to chaos 
in considerable detail. 

The formulation and the numerical method used in the present study of the 
dynamical and thermal behaviour of a plume above a line heat source immersed in a 
rectangular vessel is described in the following Section. The vessel has adiabatic 
sidewalls while the top and bottom surfaces are maintained at uniform temperature. 
Some insight in the stationary base flow regime for Rayleigh numbers just below the 
critical points is given in $3. The onset of oscillatory convection and subsequent time- 
dependent regimes in a square vessel are investigated in $4. Some preliminary results 
in square vessel have been presented in a short conference paper (Lauriat & Desrayaud 
1990). We focus in $ 5  on penetrative convection which occurs in rectangular vessels for 
small depths of immersion of the source while symmetry-breaking bifurcation points 
and first oscillatory instabilities are presented in $6 for large depths of immersion. 

2. Analysis 
2.1. Model equations 

The line source has been modelled as a local source term in the energy equation. This 
requires that the diameter of a real heat source be much smaller than the dimensions 
of the vessel. 

We consider two-dimensional convection induced by a line heat source immersed at 
the point (x,,ys) in a Boussinesq fluid occupying a rectangular vessel of width D and 
depth H(O < x < D, 0 ,< y < H ) ,  referred to Cartesian coordinates with the y-axis 
pointing upwards. The third dimension of the vessel is taken to be sufficiently large that 
a two-dimensional approximation of the flow could be assumed valid. Thus, it is 
convenient to introduce the stream function $ and the vorticity G? such that: 

V = ( u , v ) =  -- - and O = - A $ ,  ( $::) 
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where (u,u) are the components of the velocity in the (x,y) directions. Hence, the 
governing equations for the vorticity and the temperature are 

where 

E + V . ( T V )  = K ~ A T + C ’ ,  
at 

Q 
€’ = __ S(x, - x )  S(y, - y )  

Po CP 

is the thermometrical internal heating rate, Q the heat generated by unit length of the 
line source, ~ ~ , v ~  are the thermal and viscous diffusivities, C,  the specific heat at 
constant pressure, po the fluid density, /3 the coefficient of volume expansion and g the 
gravitational acceleration ; the subscript 0 denotes thermophysical properties at the 
ambient temperature T,. Also, S(z) is the Dirac delta function and the integral of 
6(x, -x) 6(y, -y )  over x and y equals unity if it includes S(0) S(O), or, otherwise, is zero 
(Beck et al. 1988). Peyret (1990) used a similar technique but with an exponential decay 
of the intensity of the source term so that it could be represented accurately with a 
spectral decomposition. 

Measuring distances and times in terms of the vessel width D and the thermal 
diffusion time D’/K, ,  respectively, the dimensionless form of (2.1), (2.2) and (2.3) are 

aT 
= A Q - R a - - ,  ax 

E + V - ( T V )  = A T + € ,  
at 

where E = S(x,-x) S(y,-y). In the vorticity equation, Pr and Ra are respectively the 
Prandtl number and the Rayleigh number given by the relations 

Pr = V , / K ~  Ra = gpQD3/Ao vo K ~ .  

The temperature is measured in terms of a characteristic temperature difference Q / A o ,  
A, being the thermal conductivity, and the ambient temperature T, is chosen as the 
reference temperature. 

Rigid, no-slip boundary conditions are imposed at the walls of the vessel. We assume 
that the upper and lower boundaries are maintained at the fixed temperature T,, while 
the vertical boundaries are adiabatic. Thus, the dimensionless temperature satisfies the 
following boundary conditions : 

i T = O  a t y = O a n d A ,  

aT/dx = 0 at x = 0 and 1, 

where A = H / D  is the aspect ratio of the cross-section of the vessel. 
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Ra Grid 

129 x 129 
33 x 33 

l o 6  { 65x65 
129 x 129 
33 x 33 

3 ~ 1 0 ~  { 65x65 
129 x 129 

+.,ax 

6.13 
6.14 
6.14 

18.52 
18.53 
18.56 
71.37 
71.94 
72.42 

u2 

9.88 
10.13 
10.19 
43.55 
44.59 
44.87 

110.4 
107.9 
108.3 

vz 
- 12.46 
- 12.75 
- 12.83 
-21.93 
-22.33 
- 22.43 
-41.80 
-42.15 
-41.57 

4 
36.54 
36.58 
36.59 

145.1 
147.0 
147.4 
640.4 
675.5 
684.9 

T, 
0.140 
0.141 
0.141 
0.085 
0.086 
0.086 
0.041 
0.044 
0.045 

TABLE 1. Comparison of some characteristic values for different Rayleigh numbers 
( A  = 1, H ,  = 0.75) 

At steady state, the energy dissipated by the line source is lost at the boundaries. This 
requirement of equality leads to the non-dimensional steady-state condition : 

lDS(r,x)S(ys-y)dS = 1 = - s, -dT, :: 
where ED is the problem domain and r the boundary. In addition, the heat flux through 
any horizontal plane, defined as 

(2.10) 

must satisfy the following conditions : 

#(y-)+#(y+) = 1 Vy- < ys and Vy+ > ys. (2.1 1) 

It is useful to introduce the mean kinetic energy EK = 1/(2D) ( 1  Vl / i , 2  as a global 
measure of dynamics where 1 1  I l d , 2  is the discrete L, norm. 

2.2. Numerical procedure 
The numerical technique employed in the present investigation has been described in 
Desrayaud, Lepeutrec & Lauriat (1990) and has been shown to be accurate and reliable 
for unsteady flows at very low Prandtl numbers. Here we shall mention only a few of 
its main features. The time integration of the vorticity and energy equations was 
performed using an alternating directional implicit (ADI) splitting scheme. The 
vorticity equation was then discretized by employing central differences based on 
Taylor series expansions for all spatial derivatives, including the convective terms. The 
nodal points were located on a standard mesh. For the energy equation, a control- 
volume formulation with staggered grids and central differencing was retained in order 
to improve the overall energy balance. One layer of grid points outside each boundary 
was included to facilitate the application of the boundary conditions using quadratic 
extrapolations. For both vorticity and energy equations, the Thomas algorithm was 
employed to solve the tridiagonal systems of algebraic equations. On the other hand, 
finite-difference equations for the stream-function equation were solved by a direct 
method which uses a block-cyclic reduction process. Such a direct, non-iterative 
solution procedure for the stream function was found to be essential for the present 
problem, i.e. to follow accurately unsteady motions. From the solution of the stream- 
function equation, the wall vorticities were updated using a second-order-accurate 
formulation. 
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Depth of Source 
immersion H, Grid position 

17, 13 
33,25 
17,25 

33 x 49 17, 31 
0.75 (65x97 33, 61 

1.50 {;E; 
1.00 {;;;;; 33,49 

Frequency 
Ra (k0.12) 

2.5 x 104 2.07 
2.5 x 104 2.07 

3 x 104 5.61 
3 x 104 5.62 
3 x 105 15.17 
3~ 105 15.14 

TABLE 2. Frequencies for two uniform grids and for different depth of immersion in a rectangular 
vessel ( A  = 2) 

A number of tests have been performed with various grid sizes and time steps to 
ensure accuracy, stability and avoid spurious aperiodic flows. Several test cases 
conducted to check that boundary-layer-like flows and plumes instabilities can be 
simulated accurately are shown in tables 1 and 2 for stationary and oscillatory regimes 
respectively. The results of computations carried out on 33 x 33, 65 x 65 and 129 x 129 
uniform grids for lo5 < Ra < 3 x lo7 are reported in table 1 (subscripts 2 and 3 refer 
to the points M,(0.25,&4) and M,(0.5,$4)). It can be seen that the solutions for the 
65 x 65 and 129 x 129 grids are within 1 YO while the results could be considered as 
satisfactory for the coarsest grid. 

Double-precision computations were found necessary for flows undergoing a Hopf 
bifurcation into time-dependent convection in order to avoid non-physical solutions 
and spurious wiggles in the dependent-variable fields. The flow was found to be 
stationary at Ra = 3.1 x lo7 when using a 65 x 65 grid, even though the computations 
were performed over more than 280000 time steps, and it became periodic at Ra = 

3.2 x 10’. With a 129 x 129 grid the flow was found to be periodic at Ra = 3.1 x lo7. It 
is not surprising that the instabilities set in at lower Ra, because grid refinements shift 
bifurcation points slightly but without affecting their overall pattern. 

For rectangular vessels of aspect ratio A = 2,33 x 49 and 65 x 97 uniform grids have 
been used. In view of the moderate values of the Rayleigh number at which instabilities 
set in, it appears that a 33 x 49 grid is fine enough for Ra < lo6 (table 2). A 66 x 97 grid 
was used for higher Rayleigh numbers. 

Different dynamical regimes of the flow can be distinguished by examining high- 
resolution power spectra of some global or local fluctuating values. Since small time 
steps At are required to perform time integrations accurately (for example, a value of 
At = 1.5 x was used at Ra = 3.5 x lo7), the data are oversampled. Hence, the data 
have been sampled every M points to yield a sufficient effective sampling period At,. 
The Fourier transform has been estimated with a fast Fourier transform (FFT) 
algorithm and the FFT length has been chosen to be at least N = 4096 points to obtain 
good spectral resolution (Af = 1 /NAt,) ,  spectral estimates being obtained up to the 
Nyquist frequencyf, = 1/2At,. Power spectra have been normalized and plotted on a 
logarithmic vertical scale from lo-* to 1. 

3. Base-flow simulations 
Typical results for the streamlines and isotherms are shown in figure l(a-c) for 

various depths of immersion (H ,  = A -ys) of line sources in the central vertical plane 
of the vessels (i.e. x, = 0.5). Maxima of the stream function are also given. All the 
simulations have been performed for air-filled vessels (Pr = 0.71). 
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FIGURE 1. Steady-state isotherms and streamlines for various flows and Rayleigh numbers just below 
thecritical values, Pr = 0.71. (a) Ra = 3 x 107,A = 1, H,  = 0.75; (b) Ra = 1.9 x lo6, A = I, H,  = 0.50; 
(c) RU = 5 x lo3, A = 2, H,  = 1.75. 
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(b) 
0 

FIGURE 2. Periodic flow of frequency f = 294.2 +0.4 in a square vessel for Ra = 3.1 x lo7, H, = 0.75. 
(a) Phase portrait of the horizontal component of the velocity U, at point All(;, $4) versus upper heat 
flux $. (b)  Power spectrum of the horizontal component of the velocity U, at point M,(&fA). (c) 
Power spectrum of the horizontal component of the velocity U,. (d )  Power spectrum of upper heat 
flux $. 

(a) H ,  Ra, Ra, f Type of Hopf bifurcation 

0.75 (3.0-3.1) x 107 294.2 Supercritical 
0.50 (1.5-1.6) x 10' 30.4 Supercritical 
0.25 (3.1-3.2) x lo6 38.5 Supercritical 

(b) H8 Ra, Ra, f Type of Hopf bifurcation 

1.75 (3.00-3.02) x lo4 0.2 Subcritical 
1 S O  (2.1-2.2) x 104 1.7 Subcritical 
1.25 (1.0-1.5) x 1 0 4  1.9 Subcritical 
1 .oo (2.0-2.5) x 104 5.3 Supercritical 
0.75 (2.5-3.0) x 105 15.0 Supercritical 

(4 A Ra, Ra, f Type of Hopf bifurcation 

2.00 (2.5-3.0) x lo5 15.0 Supercritical 
1.75 (3.0-4.0) x 105 17.2 Supercri tical 
I .50 (8.0-9.0) x lo5 25.6 Supercri tical 
1.25 (l .&IS)x lo6 33.2 Supercritical 
1 .oo (3.CL3.1) x lo7 294.2 Supercritical 

TABLE 3. Critical Rayleigh numbers, frequency and type of Hopf bifurcation at various depths of 
immersion for (a) A = 1 and (b)  A = 2 and (c) for various aspect ratios at H ,  = 0.75 

Table 3 gives the lower and upper bounds on the critical Rayleigh numbers. These 
bounds are for the highest value at which a steady-state motion was found to exist 
(Ra,) and the smallest value at which the flow was found unsteady (Ra,). The 
frequencies reported in table 3 are for the Ra,-values. The different types of bifurcation 
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occurring in the configurations considered are given also. Steady-state isotherms and 
streamlines in square and rectangular vessels for Rayleigh numbers just below the first 
bifurcation point are displayed in figure 1. It can be seen that a recirculation flow is 
induced in which hot fluid rises with the plume above the line source, is cooled 
downstream and then descends along both sides of the vessel. The flow fields are 
characterized by mirror symmetry about the vertical centreline. It is seen from figure 
1 (a) ( A  = 1, H, = 0.75) that for line sources near the bottom wall, a strong steady fluid 
circulation occurs above the line source while a relatively stagnant layer of fluid is seen 
below. Obviously, the temperature gradients inside the bottom region strongly depend 
on the thermal boundary conditions applied at the bottom wall, while the flow and 
temperature fields in the upper region of the vessel are weakly affected by this thermal 
boundary condition provided the Rayleigh number is large enough (Lauriat & 
Desrayaud 1990). Similar features are seen in figure l(b) for smaller depth of 
immersion, H, = 0.5, but the bottom stagnant layer of fluid which is stably stratified 
now extends over one-third of the vessel approximately. On the other hand, for large 
depth of immersion in rectangular vessels as shown on figure 1 (c), the plume does not 
reach the top wall and there is an unstably stratified layer of stagnant fluid above the 
plume. It should be noticed that the fluid circulation is very weak owing to the low 
Rayleigh number. The flow is in a conductive state, as confirmed by the quasi-circular 
isotherms around the source. 

These three flow patterns give way to three different routes to chaos. The first 
scenario, studied in the next section, can be found only if the layer of fluid below the 
line source is small enough and if the plume reaches the top of the vessel. This happens 
only in vessels of small aspect ratio ( A  < 1). The resulting periodic motion can be 
viewed as the natural swaying motion of confined plumes in the sense that the 
instabilities are neither driven by a stable layer of fluid at rest below the source as on 
figure 1 (b) nor triggered by an unstable layer of fluid above the plume as on figure 1 (c). 
In the present study, these two other scenarii are called penetrative convection, since 
the convecting plume is bounded below by a conducting layer of fluid, and 
Rayleigh-Btnard-like convection, since the underlying mechanism of the onset of 
instabilities is the destabilization of a motionless upper layer. These two mechanisms 
are respectively studied in @ 5  and 6. 

Thus, contrary to what has been found in many studies in freely rising thermal 
plume, interactions of the plume with the top and side walls play a dominant role in 
the flow structure. 

4. Natural swaying motion in a square vessel 

the line source being near the cold bottom wall (H,  = 0.75) as in figure 1 (a). 
In this section the numerical results discussed are for vessels of square cross-section, 

4. I. Periodic motion 

For Rayleigh numbers lower than Ra, = 3 x lo7, the system is attracted to a fixed 
point, representing a steady motion. The bifurcation leads to a system which is then 
attracted to a limit cycle, indicating a periodic motion. Figure 2 shows four plots 
of data for Ra = 3.1 x lo7, for which a periodic asymptotic state is reached at t z 5 
(At = 5 x lop5). The first plot presents the phase portrait of (Ul ,  4) while the other three 
are for spectral densities of the horizontal component of the velocity at two points and 
the heat flux through the upper boundary ($). The data shown on figure 2(a) are for 
every time step during the time interval 7 < t < 8.75 with 68 iterations per cycle, 
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Ra 

FIGURE 3. Variations of the squared amplitudes of fluctuations for horizontal components of the 
velocity U ,  and U, and upper heat flux 4 in the left-half of the vessel. 

10-7~a 

3.00 
3.10 
3.20 
3.30 

3.40 

3.50 

3.60 

3.70 

3.80 

3.85 
3.90 
4.00 

Description 

Supercritical Hopf bifurcation 
P1 
PI 
P1 

Transient QP2, then P 1 

Transient QP2, then P1 

Transient QP2, then PI 

P2T (weak&) 

P2T (weak&) 

Transient P2T, then I 
Transient P2T, then I 
I 

Frequency Rat/ f 

f ,  = 294.2 18.93 
f, = 299.7 18.87 
f. = 305.2 18.82 
111 

18.80 

18.79 

f ,  = 310.1 

f, = 314.8 
(f2 = 96.1) 
f ,  = 319.4 

(f, = 94.4) 

{ 
( f ,  = 97.7) 

TABLE 4. Route to chaotic motion in a square vessel with a line source at H ,  = 0.75 : P1, periodic state; 
QP2, Quasi-periodic state with two incommensurate frequencies; PT2, periodic state on a 2-torus; I, 
intermittent state 

representing slightly less than 51 5 cycles. Figure 2(a) clearly illustrates the precisely 
periodic nature of an asymptotic flow, the fundamental frequency of which isf, = 

294.2 as shown in figure 2(b). Only odd harmonics are present for U ,  in figure 2(c) 
while the fundamental frequency and odd harmonics are missing for q5 in figure 2 ( d ) ;  
these plots indicate a symmetry in the motion during the period, which is also depicted 
on figure 2(a). 

Moreover, we noticed that the closer to the critical value the Rayleigh number is, the 
longer is the time for attaining the asymptotic flow. This suggests that the onset of 
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FIGURE 4(a). For caption see page 629. 

unsteady solutions is due to the presence of a Hopf bifurcation point. Indeed, for such 
a bifurcation, the time needed to reach the asymptotic flow behaves like (Ra - RaJ-l. 
Figure 3 shows that the amplitude of the perturbation for slightly supercritical 
Rayleigh numbers evolves like (Ra-Ra,);, which is also the signature of a Hopf 
bifurcation (BergC, Pomeau & Vidal 1988). This feature has been used to accurately 
determine the value of the critical point, which has been done from linear extrapolation 
of zero oscillation amplitude occurring close to the presumed threshold value. The 
squares of the amplitudes of the fluctuations, shown in figure 3 for U,, U ,  and for 
various supercritical Rayleigh numbers, give a critical Rayleigh number very close to 
3 x lo7. In addition, it has been found that the flow undergoes a supercritical Hopf 
bifurcation since no hysteresis effect has been encountered on decreasing the Rayleigh 
number from 3.1 x lo7 to 2.9 x lo7. A further feature of a Hopf bifurcation is the 
existence of a relationship between the dimensionless period of the oscillations and the 
Rayleigh number in the vicinity of the bifurcation point. By noting that the two cells 
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FIGURE 4(b) .  For caption see facing page. 

on each side of the thermal plume have a relatively stagnant and unstably stratified 
core, we could calculate the angular Brunt-Vai'sala frequency N associated to the 
plume because, for high Rayleigh numbers, the heat is mainly transferred to the top 
wall. Then, for any horizontal planes above the heat source 

Q / D  x A,aT/ay 

Thus, the frequency is proportional to N = (Ra Pr); and should be nearly constant near 
the threshold. This is well supported by the results shown in table 4. All the frequencies 
given in table 4 have also been calculated with a smaller time step (generally half the 
previous one) to check that the asymptotic flow dynamics are independent of the time 
step. 
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FIGURE 4. (a) Streamlines, (b) isotherms and (c) disturbance isotherms plotted over one oscillation 
period, with the base state at the centre, for Ra = 3.5 x lo7, A = 1, H, = 0.75. 

A second frequency f, (given in parentheses in table 4) appears at Ra = 3.4 x lo' 
during the transient evolution but vanishes for a time unit greater than one, meaning 
that the frequencyf, has at least eight orders of magnitude less power; moreover, these 
two frequencies are incommensurate. 

The isotherms and streamlines are shown for Ra = 3.5 x lo7 in figures 4(a) and 4(b) 
over one period for eight snapshots equally spaced in counterclockwise progression 
around the figure at the centre. The base-state streamlines (a) and isotherms (b,  c) are 
plotted at the centre of figure 4. Positive and negative values of the streamlines 
correspond to counterclockwise (solid lines) and clockwise (dashed lines) circulations 
respectively. The periodic motion and the symmetry with respect to the vertical 
centreplane during one period are clearly visible. These findings were experimentally 
recorded by Yosinobu el ol. (1979) in the case of a buoyant plume in air. The general 
pattern of the mean temperature and stream function fields calculated are given in the 
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FIGURE 5 .  Evolution of the temperature at point M(0.828,0.875) over one oscillation period. 
Open circles are for frames of figure 4. 

centre part of figure 4(a, b) and are the same as those presented in figure 1 (a), but with 
higher isovalues. It can be seen that the upper part of the plume has the same 
symmetrical motion, once to the left, once to the right of the cavity. Consequently, the 
frequency of the heat flux at the top wall is twice the fundamental frequency (see also 
figure 2d) .  Figure 4(c) presents a time sequence of the fluctuating temperature field 
corresponding to the global field shown in figure 4(b). This fluctuating field has been 
calculated by taking the mean arithmetic field over one period and then subtracting it 
from instantaneous fields once the asymptotic periodic motion has been reached. It can 
be seen in figure 4(c) that hot and cold fluctuations grow simultaneously on each side 
of the source and a circulation of alternately hot and cold fluctuations arises in the two 
halves of the vessel. The instabilities are first confined within the plume where they are 
amplified and within the horizontal boundary layer near the top wall, then they move 
downward and back to the heat source. Therefore, instead of a swaying motion with 
sinusoidal wavelength as for a freely rising plume, we observed two counter-rotating 
circulations of fluid with alternating hot and cold spots. The motion of the plume itself 
is rather weak and detached blobs arise in the upper horizontal extents of the plume 
and sink along the vertical adiabatic surface. This behaviour is supported by the record 
of the temperature in the upper right corner of the vessel (point with coordinates 
(0.828,0.875)) shown on figure 5 which displays the appearance of one blob during the 
period. Urakawa et al. (1983) experimentally found identical behaviour in spindle oil 
but with a much stronger motion of the plume, especially just above the line source. 

4.2. Two-frequency locked state 
For 3.7 x lo7 < Ra < 3.8 x lo7 ,  the motion smoothly becomes a periodic, two- 
frequency locked state involving the f, and f, frequencies. The asymptotic state is then 
a limit cycle on a 2-torus of small cross-section which can be seen on the phase portrait 
of the upper heat flux versus U, over one fundamental period (figure 6). The phase 
portrait reveals that the trajectories are confined to a finite number of threads. The 
Poincare section (not shown here) confirms this behaviour since 13 distinct group 
points are visited in turn: for 13 rotations about its larger dimension, the trajectories 
pass four times around the smaller dimension. Thus, the rotation number (or the 
frequency-locking ratio) is r = & and the fundamental frequency equals f, = & f, = if,. 
This is well supported by the frequency values reported in table 2. It should be noted 
that the spectral resolution does not allow us to determine f,/f, with an accuracy better 
than 0.03; at Ra = 3.7 x lo7, it has been found that f,/’, = 3.26k0.03 z y. By filtering 
out the flow evolution over one fundamental period Po = l / f ,  with the shorter 
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FIGURE 6. Phase portrait of the upper heat flux g5 versus U, over one fundamental period P,, 
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FIGURE 7. Phase portrait U,) of the intermittently chaotic state (Ra = 3.85 x 10') arising from the 
frequency-locked state (Ra = 3.80 x lo'): (a) laminar motion+first burst period; (6) first burst 
period +first relaminarization period. 

frequencyf,, we obtain the same (apparent) motion as that presented in figure 4; only 
they,-frequency motion is then visible. If the evolution is now filtered out with the 
largest frequency f,, only a very weakf,-frequency motion is then visible, confined in 
the centre of the two cells. This weak influence of thef,-frequency is illustrated by the 
slenderness of the 2-torus in figure 6. It should also be noticed that the nonlinearities 
are weak since the contribution of the low-order mixing components C f J , )  is small. 
Simulations have been carried out up to 150000 time steps ( t  > 3), and no established 
quasi-periodic motion (fi,f, incommensurate) has ever been found. 

4.3. Chaos 
An intermittently chaotic state arises from the previous frequency-locked state. At 
irregular times and for irregular durations, the periodic laminar motion is interrupted 
by non-periodic ' bursts '. However, the characteristic of the frequency-locked state 
with locking ratio fr is maintained in the laminar windows. As a result, the spectrum 
exhibits broadband noise although relatively sharp spectral peaks still exist for all 
frequency multiples of the & locked state. Figure 7 (a)  shows the phase portrait during 
the end of the laminar transition and the first burst period for the time point interval 
[175000-203000]. The trajectories are confined to a small region in the phase space 
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FIGURE 8. Temporal convergence of the leading Lyapounov exponent for various Rayleigh 

numbers: *, A = 1, H ,  = 0.75; +, A = 2, H ,  = 1.75. 

during the laminar period and show excursions to other regions during the chaotic 
period. Figure 7(b) for the time point interval [19700&225000] exhibits anew the 
trajectories of the first burst period together with the next laminar period, the 
trajectories of which are moving back into the previous laminar region associated with 
the orbit, and then no differences are seen between figures 7(a) and 7(b). Similar 
behaviour has been found for Ra = 3.9 x lo7 and 4 x lo7 but with an increase in 
broadband noise. 

From their experiments, Forstrom & Sparrow (1967) reported turbulent bursts at 
the beginning of the transition between the laminar and turbulent states (note that 
Yosinobu et al. 1979 did not observe such phenomena). Always in the transition 
regime, Bill & Gebhart (1974) and Noto et al. (1982) recorded transits from a turbulent 
state back to a laminar one, which seems like an intermittency phenomenon. 

From the above numerical results, it could be concluded that chaotic motion arises 
through a type-I intermittent transition. This type of intermittency is characterized by 
bursts of equal-magnitude periodic windows of identical frequencies, and near the 
transition the lengths of these windows vary in proportion to (Ra-RaJfr. The 
sequence of instabilities leading to non-periodic flows is also shown on table 4. The 
periodic two-frequency locked state has been abbreviated as P2T (Periodic motion on 
a 2-Torus) following Leibovich, Lele & Moroz (1989) who found a similar but more 
complex route to non-periodicity in Langmuir circulation with constrained motion. 

4.4. Lyapounov exponents 
One of the most useful diagnostic for chaotic systems is the study of the Lyapounov 
exponents which are related to the expanding and contracting nature of different 
directions in phase space. Indeed, one of the main characteristics of chaotic motion is 
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FIGURE 9. Leading Lyapounov exponents as a function of Rayleigh number for various 

configurations: *, A = 1, H,  = 0.75; 0, A = 1, H ,  = 0.50. 

the strong dependence of the solution on initial conditions. Thus, the largest 
Lyapounov exponent measures how unstable a given flow history is, and furthermore 
gives the timescale in which the system becomes unpredictable; in other words, the rate 
at which the system creates or destroys information (the exponents are expressed in bits 
of information per iteration). The sign of the Lyapounov exponents also provides a 
qualitative picture of a system’s dynamics. An algorithm including a FORTRAN code for 
computing the leading Lyapounov exponent (LLE) from a discrete time series is given 
in Wolf et al. (1985) and has been improved by Wolf (1991, personal communication). 

Figure 8 shows the temporal convergence of some LLE estimates for two geometrical 
configurations and various Ra values which carry the most important information 
about the dynamical behaviour of the system. Checks of the stationarity and exponent 
estimates with embedding dimension, delay time and evolution time between 
replacements have been performed to give confidence in our results. Some of the 
asymptotic values of the LLE are reported on figure 9 for various Rayleigh numbers 
and two different configurations. The periodicity of the flow found at Ra = 3.1 x lo7 
is confirmed by the zero value of the LLE. For Rayleigh numbers greater than 
3.8 x lo7, the existence of one positive LLE implies the existence of chaotic behaviour 
and the larger the leading exponent is, the more the nearby trajectories diverge. This 
trend is well depicted on figures 8 and 9. 

5. Penetrative convection 
As can be seen on figure 1 (b), there is a stable layer of fluid at rest at the bottom of 

the vessel for small depths of immersion although the convective motion extends 
slightly below the line source. Computations have been carried out in square and in 
rectangular vessels. For a square vessel, penetrative convection occurs if the depth of 
immersion is such that H, < 0.5 while for rectangular vessels it happens when the depth 
of immersion is smaller than the width of the cavity (i.e. H, ,< 1). A map showing all 
the simulations carried out for A = 2 is given in figure 10 in which the symbols are for 
the different types of flows obtained. 

The bifurcation points are supercritical Hopf points with low frequency. The 
dependence of the fluctuation amplitudes of the periodic motions on the Rayleigh 
number is given in figure 11 together with the evolution of the modified period (Rai/lf), 
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while figure 12 contains information on the evolution of the critical frequency. It is 
clear from figure 1 1  that the limit-cycle bifurcation is supercritical in Rayleigh number. 
The amplitude increases roughly as the square root of the distance to the bifurcation 
point (Ra z 1.75 x lo6) and the modified period is almost constant. The low values of 
the frequencies found can be explained by the fact that the plume has to set in motion 
the fluid below the source. This is illustrated on figure 12(a) which shows a linear 
variation of the frequency of the critical points (given in table 3c) with the height of 
the layer below the source ( A  - H,) for a constant depth of immersion, H ,  = 0.75. Such 
a result clearly demonstrates that penetrative convection is the main phenomenon 
driving these instabilities. Furthermore, a $-power dependence of the frequency versus 
the critical Rayleigh numbers has also been found (figure 12b), indicating that near the 
threshold values internal gravity waves are present. Figure 13 (a, b) shows the sustained 
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oscillatory motion for H ,  = 0.5 in a square cavity. The base-state streamlines (a)  and 
isotherms (b) are plotted at the centre of figure 13(a, b). Snapshots of streamlines (a)  
and isotherms (b) are shown in counterclockwise progression around the figure at 
intervals of of one oscillation period. The two main vortices alternately penetrate 
below the line source at bottom. The twisting of the isotherms below the line source 
clearly depicts this motion. As mentioned earlier, some other cases in rectangular 
vessels and for depths of immersion H, < 1 were investigated in a similar fashion. The 
same trends as for a square vessel were found and are not discussed here. 

The periodic motion is characterized by a large contribution from the first two 
harmonics in the power spectra of the upper heat flux q$, as presented on figure 14(a). 
The flow then undergoes a second bifurcation into a limit cycle on a 2-torus. A weak 
frequencyf,, ten times smaller than the fundamental onef,, appears at Ra = 1.3 1 x lo7 
and a two-frequency locked state motion with a rotation number r =f , / f ,  = & is 
obtained. The phase portraits of the upper heat flux with a 50 time-step lag displayed 
in figure 15 confirm this behaviour. Data are for the non-dimensional time interval [0.4, 
1.641 which contains 7200 time points, and it should be noted that each limit cycle is 
made up of 67+ time points. It can be seen that the trajectories are confined to a single 
curve with a cross-over for Ra = 1.3 x lo7 (figure 15a) while they are confined to what 
appears to be a ‘ribbon’ of roughly the same shape as before for Ra = 1.33 x lo7 (figure 
15 b). The spectra of the trajectories exhibit a large number of sidebands around the 
fundamental peak and its harmonics (figure 14b) resulting from a strong nonlinear 
interaction between the two locked frequencies, f ,  and f , .  As the Rayleigh number is 
increased, these sidebands develop further, both in number and amplitude and compete 
with one another (figure 14c). The phase portrait of figure 15(c) shows the thickening 
of the torus. The phase-space trajectories of the system remain confined to a two-torus 
over a narrow range of Rayleigh numbers, during which sidebands develop strongly in 
the spectrum. Figures 14(d) and 15(d) depict the system just after the onset of chaotic 
behaviour and show that the sidebands have grown throughout the spectrum, the 
underlying envelope being broadband, despite the sharpness of the fundamental 
frequencyf, and its two first harmonics. This is exemplified by the phase space, which 
clearly shows that some periodic orbits are visited often (we can recognize roughly the 
same shape as the one shown in figure 15a), while the others appear aperiodic. Thus, 
this results in a fast transition to a fully chaotic spectrum. 

21-2 
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As explained before, an objective measure of the degree of chaotic behaviour can be 
obtained by computing the LLE. Figure 9 confirms the previous results and depicts 
well the increasingly chaotic nature of the flow from Ra = 1.35 x 10'. But at Ra = 

1.3 x lo7 the motion is always perfectly periodic, its LLE being zero. 
Recently, Noto (1989) experimentally found that the swaying frequency is 

proportional to the 0.4 power of Rayleigh number for thermal plumes reaching the 
ceiling of the vessel in a laminar state. The aspect ratio of his experimental set-up was 
A = 1.25 with a dimensionless depth of immersion H,  = 0.75. For the same geometrical 
parameters, figure 16 depicts the evolution of the frequency versus the Rayleigh 
numbers and a power very close to Noto's has been found numerically, namely, 0.407. 
This gives us a high degree of confidence in our results. It must be noticed that the 
thermal boundary conditions play a minor role only. Indeed, in the experimental 
apparatus of Noto, the temperatures of the ceiling, the bottom and the four sidewalls 
were isothermally controlled while our numerical boundary conditions are imposed 
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FIGURE 13. (a)  Streamlines and (b) isotherms plotted over one oscillation period for Ra = 2 x lo6, 
A = 1 ,  H, = 0.50. 

top and bottom temperatures and vertical adiabatic walls. We have also reported on 
figure 16 the frequencies found for vessels of different aspect ratios but with the same 
depth of immersion. As can be seen, the power is only slightly modified (0.433). 

6. Rayleigh-Benard-like convection 

(H,  > l), very different bifurcations occur. 
For rectangular vessels and depths of immersion greater than the width of the vessel 

6.1. Pitchfork bifurcation 

On increasing the Rayleigh number up to Ra = 6000, the symmetric two-cell pattern 
shown in figure 1 (c)  evolves towards an asymmetric one-cell pattern as displayed in 
figure 17. The plume is deflected towards one vertical adiabatic wall, either left or right 
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FIGURE 14. Power spectra for upper heat flux in the left-half of a square vessel, A = 1, H ,  = 0.50. 
(a )  Ra = 1.30 x lo7, (b) Ra = 1.33 x lo7, (c) Ra = 1.35 x lo7, ( d )  Ra = 1.50 x lo7. 

depending on the round-off errors generated during the computations. These two 
steady -state mirror-image solutions characterize a pitchfork bifurcation. It should be 
noticed that the symmetry breaking is not easy to observe because it arises after a long 
integration time. Indeed, all the criteria first satisfy machine convergence precision for 
a symmetric solution, then show substantial deviation and reach asymptotic values for 
asymmetric stationary flow. 

Fujii et al. (1973) were the first to observe a deflection of the plume towards one of 
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the walls when the temperatures of the vertical walls were slightly different. This 
deflection inhibits the swaying motion. Recently, some experimental studies devoted to 
plume interactions (Pera & Gebhart 1975 ; Incropera & Yaghoubi 1980), especially 
those on the interaction between a plume and a vertical unheated surface (Jaluria 
1982), have shown that the basic mechanism of the deflection process is the limitation 
of the flow which supplies the fluid entrained downstream by the plume. 

Contrary to what has been found for free laminar plumes, the destabilization of the 
two-cell flow comes from the unstably stratified layer of fluid at rest above the plume 
which appears when the plume does not reach the top of the vessel. Thus, 
Rayleigh-BCnard-like convection can arise in this upper layer when the Rayleigh 
number is high enough, giving way to one-cell flow which spreads out in the vessel. The 
potential for multiplicities of steady-state mirror solutions is the result of nonlinearities 
of the governing equations. A similar behaviour has been found by Hasnaoui, Bilgen & 
Vasseur (1990) for natural convection above an array of open cavities heated from 
below when the height of the vertical adiabatic confining walls is high enough. 

6.2. Subcritical Hopf bifurcation 
As the Rayleigh number is increased further, sustained oscillatory convection is 
obtained through a subcritical Hopf bifurcation. Convenient variables to describe the 
temporal evolution of the flow are local variables on the centreplane of the vessel. 
Figure 18 (a) presents the evolution the horizontal velocity component U ,  at point 
MI(;, $4) for various Rayleigh numbers and for a depth of immersion H, = 1.75. Below 
the pitchfork bifurcation point, which occurs at Ra = 6 x lo3, its value is zero due to 



640 G. Desrayaud and G. Lauriat 

- f = 0.0657Ra0.q33 

---- f = 0.0986Ra0.'0' 

FIGURE 16. Evolution of the frequency for various aspect ratios (*, A = 1.25; A, A = 1.50; +, A = 
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FIGURE 17. (a) Isotherms and (b) streamlines for stationary asymmetric flow, A = 2, H, = 1.75, 
Ra = 6 x lo3. 



Unsteady conJined buoyant plumes 64 I 

20 

u,, 0 

- 20 

- 40 

1 - 
- 
- 1  J 

I I l l  I 1 I I 1 1  I l l  
5 6 7 8 9 ’  2 3 4 5 6 7 8 9  

1 0 4  
Ra 

1 o5 

-191 -34 1 I 
0 80 0 10 t t 

FIGURE 18. Evolution of the amplitude of the horizontal component of the velocity Ul : (a)  for various 
Rayleigh numbers, (b) at Ra = 3.02 x lo4, (c) at Ra = 8 x lo4, A = 2, H ,  = 1.75. 

the flow symmetry. Above it the velocity component can take two opposite values. For 
higher Rayleigh numbers, the motion undergoes a second bifurcation at Ra x 
3.02 x lo4 into a limit cycle and the value oscillates periodically between the two mirror 
values of the pitchfork bifurcation. Thus, oscillations onset with finite amplitude which 
defines a subcritical Hopf bifurcation. On decreasing the Rayleigh number from Ra = 
3.02 x lo4 to 3.01 x lo4 the flow became steady again. Consequently, no hysteresis effect 
was found. As can be seen in figure 18 (a), the value of the horizontal component of the 
velocity jumps at the Hopf bifurcation point. The underlying phenomenon is clearly 
depicted on figure 18 (b) which presents the time history of this variable for a Rayleigh 
number just above the onset of oscillations. Plateaux of opposite values, which are 
those of the pitchfork bifurcation, are periodically reached. The plume sways abruptly, 
overshoots briefly the other mirror flow solution due to its own inertia and becomes 
stable over a long period of time. At Ra = 3.02 x lo4 the period is equal to about 5 
(fz 0.2). This is why the frequencies are so small for H, > 1 (table 3b). On increasing 
the Rayleigh number, the solution continues to oscillate between two mirror solutions 
and the frequency is increased, the plateaux being shorter (figure 18c). 

Figure 19 shows the streamlines (a) and isotherms (b) for Ra = 4 x lo4 in 
counterclockwise progression at an interval of Q of one oscillation period. Again, the 
base-state streamlines (a) and isotherms (b) are plotted at the centre of figure 19. The 
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periodic flow is characterized by three eddies : one primary vortex which rotates 
alternately clockwise and counterclockwise and occupies the central core, and two 
secondary eddies located near one of the vertical walls at the top and bottom corners. 
The top secondary eddy grows and finally occupies most of the vessel. Indeed, the fluid 
carried by this eddy becomes more and more cold on contact with the upper boundary, 
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FIGURE 19. (a) Streamlines and (b) isotherms plotted over one oscillation period for Ra = 4 x lo", 
A = 2, H, = 1.75. 

increasing its intensity, then collapses when the strength of the primary vortex is too 
weak to sustain it. Thus the plume is deflected towards the opposite vertical wall. Two 
secondary eddies then appear on the opposite vertical wall and a symmetrical evolution 
is observed. Figure 19 clearly depicts the oscillations of the periodic motion between 
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FIGURE 20. Time evolution of the mean kinetic energy during one oscillation period, Ra = 4 x lo4, 

A = 2, H ,  = 1.75. Open circles correspond to the frames of figure 19. 

the two asymmetric stationary solutions of the pitchfork branches. The physical 
mechanism behind the growth of the secondary upper eddy seems to be a separate flow- 
like process. Along one of the vertical boundary, the fluid first accelerates, then it slows 
down when encountering the upper boundary. This obstruction results in an increase 
in pressure. If the kinetic energy of the flow is too weak to negotiate this pressure hill, 
the flow separates and an eddy appears at the top corner, left or right, according to the 
direction of the circulation of the main stream. Indeed, as can be seen on figure 20, the 
kinetic energy dramatically increases twice in each period and the sharp peaks coincide 
with the absence of secondary eddies. 

At higher Ra, it seems that the temporal behaviour of the oscillations becomes 
chaotic. The LLE estimate given in figure 8 shows that the motion is chaotic, at least 
for Ra = 8 x lo5. However, the regime is difficult to map accurately owing to 
limitations in the numerical resolution. Indeed, due to the very low value of the 
frequency, long time integrations are needed to correctly observe transitions and to 
obtain accurate power spectra. Nevertheless, it does not seem that any period-doubling 
scenario exists after the pitchfork bifurcation as for the classical Feigenbaum scenario. 

7. Conclusions 
Swaying motions of confined thermal plumes above a horizontal line heat source 

inside a vessel with adiabatic sidewalls, and cold top and bottom walls were 
numerically investigated and a variety of dynamic behaviour was shown according to 
the depth of immersion, aspect ratio and Rayleigh number. 

For rectangular vessels with A > 1, two destabilizing mechanisms characterized by 
low-frequency motions were found : 

(i) For depths of immersion greater than the width of the vessel and small enough 
Rayleigh numbers, Rayleigh-BCnard-like instability may appear within the layer of 
fluid above the thermal plume. The results obtained show asymmetric steady motions 
occurring through a pitchfork bifurcation, followed by a subcritical Hopf bifurcation. 
Twice over the period, one of the rolls is damped while the other occupies the whole 
vessel. 

(ii) For depths of immersion smaller than the width, the mechanism driving the 
periodic motion is the penetrative convection which occurs within the layer of fluid at 
rest below the line heat source. The symmetric plume rolls may destabilize this layer 
and then penetrate alternately to the bottom through a soft bifurcation (Hopf point). 
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In these cases, two convection rolls of almost same strength always exist over all the 
period. 

For square vessels ( A  = 1). penetrative convection could be seen for quite small 
depths of immersion. On the other hand, an upper unstable layer at rest was found 
even for a line source located close to the bottom of the vessel. In these cases, steady 
symmetric flows exist at high Rayleigh numbers. For Ra greater than a critical value, 
which depends on the depth of immersion, a swaying motion with high frequency 
starts. This motion is followed by a two-frequency locked regime, then a weakly 
turbulent regime arises via an intermittent route to chaos. 

In the past, a number of experiments have been conducted for freely rising plumes 
in air at atmospheric pressure with the aim of clarifying the transition between the 
laminar and turbulent regimes. Some experiments have been done using large 
enclosures, but the geometrical dimensions were not fully specified generally. Thus, 
comprehensive comparisons with the present results are difficult. A comparison with 
the experimental correlation given by Noto (1 989) for the swaying frequency of 
laminar plumes is discussed in the present paper. It has been found that the numerical 
predictions are in very good agreement with the experimental frequency for an aspect 
ratio A = 1.25 and a depth of immersion H, = 0.75. 
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